Jenis Air Rendaman pada Singkong (Manihot esculenta) Terhadap Penurunan Kadar Asam Sianida (HCN)

  • Hidayatul Fadlilah Politeknik Kesehatan Kemenkes Surabaya, Indonesia
  • Narwati Narwati Politeknik Kesehatan Kemenkes Surabaya, Indonesia
  • Rachmaniyah Rachmaniyah Politeknik Kesehatan Kemenkes Surabaya, Indonesia
  • Marlik Marlik Politeknik Kesehatan Kemenkes Surabaya, Indonesia
  • Yudied Agung Mirasa bBalai Besar Teknik Kesehatan Lingkungan dan Pengendalian Penyakit (BBTKLPP) Surabaya, Indonesia
Keywords: Cassava, hydrogen cyanide (HCN), soaking, water type

Abstract

Cassava naturally contains cyanogenic glycosides, which have the potential to become hydrogen cyanide (HCN) toxic. Cassava can be safer to be consumed if it is conducted pre-processing and processing. One of example of pre-processing is soaking. The objective of this research was to comprehend the effect of soaking water type in cassava on the hydrogen cyanide (HCN) reduction level. This research was a pre-experimental research with After Only Design. The objects of research was cassavas with a total of 18 samples. The types of soaking water was in the form of 10% of table salt solution concentration, 10% calcium hydroxide solution concentration, and PDAM water (control) with an initial temperature of 55ºC. The soaking time was conducted for 120 minutes. The method of hydrogen cyanide examination level using a titrimetric method. The data that had obtained was then analyzed using an Anova test. The result of while cassavas’ HCN level after soaking with table salt solution was 63 mg/kg, calcium hydroxide solution was 70 mg/kg, and PDAM water was 175 mg/kg. The Anova test indicated that there was a difference in hydrogen cyanide level value from three types of soaking water in cassava (p < 0.05). The conclusion of this research is that there is an effect of soaking water type on hydrogen cyanide (HCN) level value which is contained in cassava

References

1. Dewi IN, Hapsari E. Manfaat Ubi Kayu Dalam Pemenuhan Kebutuhan Hidup Petani Hkm Wana Lestari I, Kecamatan Playen, Kabupaten Gunungkidul. J Hutan Pulau- Pulau Kecil. 2019;3(2):136–47.
2. Nyirenda KK. Toxicity Potential of Cyanogenic Glycosides in Edible Plants. In: mediical toxicologi [Internet]. IntechOpen;

2020. p. 1–20. Available from: https://www.intechopen.com/chapters/71290
3. Nnedimma Nnebe. Thermostability Of Cassava Linamarase. Vol. 151, Nhk技研. 2015. 1–54 p.
4. Allen AR, Booker L, Rockwood GA. Acute Cyanide Toxicity. In: Toxicology of Cyanides and Cyanogens: Experimental, Applied and Clinical Aspects. 2016. p. 1–20.
5. Downey JD, Basi KA, Defreytas MR, Rockwood GA. Chronic Cyanide Exposure. In: Toxicology of Cyanides and Cyanogens: Experimental, Applied and Clinical Aspects. 2016. p. 21–40.
6. Nyamekye CA. Health Issues Related to The Production and Consumption Of Cassava as a Staple Food. Norwegian University Of Life Sciences; 2021.
7. Syaifullah M. 4 Anak di Aceh Keracunan Singkong Bakar, Seorang Meninggal. 29 juli 2021 [Internet]. 2021 [cited 2021 Nov 2]; Available from: https://www.idntimes.com/news/indonesia/m uhammad-saifullah-3/4-anak-di-aceh- keracunan-singkong-bakar-seorang- meninggal/3
8. Azizah H. Peranan Keterangan Ahli sebagai Alat Bukti yang Dapat Mempengaruhi Keyakinan Hakim untuk Mengambil Keputusan dalam Tindak Pidana Pembunuhan Berencana Ditinjau dari Hukum Acara Pidana di Indonesia. Edisi Revisi, Jakarta, Sinar Grafika. Universitas Sumatera Utara; 2017.
9. Badan Standarisasi Nasional. SNI 01-7152- 2006 tentang Bahan Tambahan Pangan, Persyaratan Perisa, dan Penggunaan dalam Produk Pangan. 2006. p. 1–128.
10. Harimu L, Haeruddin, Fatahu, Rizal. Pengurangan kadar sianida umbi gadung menggunakan kombinasi cara fisika dan kimia serta pemanfaatannya dalam pembuatan produk pangan. J Pembangunan dan Budaya. 2020;2(1):65–79. Available from: http://jurnalkainawa.baubaukota.go.id/index. php/knw
11. FAO. Discussion Paper on the Establishment of Mls for Hcn in Cassava and Cassava- Based Products and Occurrence of Mycotoxins in These Products. In: Joint Fao/Who Food Standards Programme Codex Committee on Contaminants in Foods. 2019.



p. 1–26. Available from: http://www.fao.org/fao-who- codexalimentarius/sh- proxy/en/?lnk=1&url=https%253A%252F% 252Fworkspace.fao.org%252Fsites%252Fco dex%252FMeetings%252FCX-735- 13%252FWDs%252Fcf13_14e.pdf
12. Pertanian K. Varietas ubi kayu [Internet]. 2021 [cited 2021 Nov 21]. Available from: https://www.litbang.pertanian.go.id/varietas/
?f_l=3&f_k=313
13. Nasution SB. Pengaruh Lama Perendaman Terhadap Kandungan Sianida Pada Ubi Kayu Beracun Tahun 2015. J Ilm PANNMED (Pharmacist, Anal Nurse, Nutr Midwivery, Environ Dent. 2019;10(2):159– 63.
14. Noerwijati K, Budiono R. Mengenal senyawa hcn pada ubi kayu. Semin Nas Fak Pertan Univ Muhammadiyah Purwokerto Optim Sumberd Lokal Untuk Mewujudkan Kedaulatan Pangan. 2018;172–82. Available from: http://www.milkingredients.ca/index- eng.php?id=197.9/3/2018
15. Ndubuisi ND, Chidiebere ACU. Cyanide in

Cassava: A Review. Int J Genomics Data
Min. 2018;02(01):1–10.
16. Siqhny ZD, Sani EY, Fitriana I. Pengurangan Kadar HCN pada Umbi Gadung Menggunakan Variasi Abu Gosok dan Air Kapur. J Teknol Pangan dan Has Pertan. 2020;15(2):1.
17. Nasta’in L, Wiyarsi A. Analisis Kadar dan Lama Perendaman Larutan Natrium Klorida (NaCl) dalam Detoksifikasi Asam Sianida (HCN) pada Umbi Gadung (Dioscorea Hispida Dennst). Sci Tech J Ilmu Pengetah dan Teknol. 2019;5(1):6.
18. Tetelepta G, Souripet A, Somalay MON. Pengaruh Jenis Larutan Perendaman Terhadap Sifat Fisik dan Organoleptik Keripik Kulit Ubi Kayu. J Teknol Pertan. 2018;7(2):36–42.
19. Rusli S, Pertanian F, Oleo UH. Pengaruh Perendaman dalam Berbagai Konsentrasi Larutan Kapur dan Garam terhadap Penurunan Kadar Asam Sianida (HCN) Umbi Gadung. J Sains dan Teknol Pangan. 2019;4(6):2647–57. Available from: http://dx.doi.org/10.33772/jstp.v4i6.10906
Published
2022-10-31
Section
Articles